Blockade of NF-kappaB improves cardiac function and survival after myocardial infarction.
نویسندگان
چکیده
NF-kappaB is a key transcription factor that regulates inflammatory processes. In the present study, we tested the hypothesis that blockade of NF-kappaB ameliorates cardiac remodeling and failure after myocardial infarction (MI). Knockout mice with targeted disruption of the p50 subunit of NF-kappaB (KO) were used to block the activation of NF-kappaB. MI was induced by ligation of the left coronary artery in male KO and age-matched wild-type (WT) mice. NF-kappaB was activated in noninfarct as well as infarct myocardium in WT+MI mice, while the activity was completely abolished in KO mice. Blockade of NF-kappaB significantly reduced early ventricular rupture after MI and improved survival by ameliorating congestive heart failure. Echocardiographic and pressure measurements revealed that left ventricular fractional shortening and maximum rate of rise of left ventricular pressure were significantly increased and end-diastolic pressure was significantly decreased in KO+MI mice compared with WT+MI mice. Histological analysis demonstrated significant suppression of myocyte hypertrophy as well as interstitial fibrosis in the noninfarct myocardium of KO+MI mice. Blockade of NF-kappaB did not ameliorate expression of proinflammatory cytokines in infarct or noninfarct myocardium. In contrast, phosphorylation of c-Jun NH2-terminal kinase was almost completely abolished in KO+MI mice. The present study demonstrates that targeted disruption of the p50 subunit of NF-kappaB reduces ventricular rupture as well as improves cardiac function and survival after MI. Blockade of NF-kappaB might be a new therapeutic strategy to attenuate cardiac remodeling and failure after MI.
منابع مشابه
Transplantation of Cardiogenic Pre-Differentiated Autologous Adipose-Derived Mesenchymal Stem Cells Induced by Mechanical Loading Improves Cardiac Function Following Acute Myocardial Infarction in Rabbit Model
Objective- Investigate myocardial performance after autologous adipose-derived (ASCs) mesenchymal stem cell differentiated under equiaxial cyclic strain, transplantation in rabbits with acute myocardial infarction (AMI). Design- Prospective, randomized experimental study Animals- 20 New Zealand White rabbits (2-3 kg) P...
متن کاملEffects of Doxycycline on Cx43 Distribution and Cardiac Arrhythmia Susceptibility of Rats after Myocardial Infarction
Effects of Doxycycline on Cx43 Distribution and Cardiac Arrhythmia Susceptibility of Rats after Myocardial Infarction Abstract: This study aimed to observe the effects of doxycycline (DOX) on gap junction remodeling after MI and the susceptibility of rats to cardiac arrhythmia. The proximal left anterior descending coronary artery of rats was ligated to establish a myocardial infarction animal...
متن کاملEffects of Doxycycline on Cx43 Distribution and Cardiac Arrhythmia Susceptibility of Rats after Myocardial Infarction
Effects of Doxycycline on Cx43 Distribution and Cardiac Arrhythmia Susceptibility of Rats after Myocardial Infarction Abstract: This study aimed to observe the effects of doxycycline (DOX) on gap junction remodeling after MI and the susceptibility of rats to cardiac arrhythmia. The proximal left anterior descending coronary artery of rats was ligated to establish a myocardial infarction animal...
متن کاملBlockade of NF-kappaB ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin II.
OBJECTIVE Nuclear factor (NF)-kappaB is a key transcription factor that regulates inflammatory processes. In the present study, we assessed the hypothesis that blockade of NF-kappaB may ameliorate ventricular hypertrophy in response to chronic infusion of angiotensin II. METHODS Mice with targeted disruption of the p50 subunit of NF-kappaB (KO) were used to block the activation of NF-kappaB. ...
متن کاملTargeted deletion of nuclear factor kappaB p50 enhances cardiac remodeling and dysfunction following myocardial infarction.
Myocardial infarction is commonly complicated by left ventricular remodeling, a process that leads to cardiac dilatation, congestive heart failure and death. The innate immune system plays a pivotal role in the remodeling process via nuclear factor (NF)-kappaB activation. The NF-kappaB transcription factor family includes several subunits (p50, p52, p65, c-Rel, and Rel B) that respond to myocar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 291 3 شماره
صفحات -
تاریخ انتشار 2006